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A Variational Wave Function for 2p ?-Orbitals
in Atomic Negative lons

M. A. Abbadi, 3 N. M. Bani-Hani,2 and J. M. Khalifeh?

A variational wave function is used to describe the binding energy of atomic negative
ions using a two-electron system in the?Zpate. Each electron is described by a
modified screened hydrogenic wave function involving two free screening parameters
denoted by anda. The model is applied to hydrogen, helium, lithium, and boron anions,
where the optimum values of the screening parameters are deduced through fitting the
optimized energy to available experimental and theoretical values. The behavior of the
optimum wave function for each anion is also investigated as a function of electronic
radial distance and compared with its counterpart in the screened hydrogenic model and
the Hartree—Fock method.

1. INTRODUCTION

Negative ions play an important role in applied physics such as the devel-
opment of gas lasers, gas discharge devices, plasma chemistry (Smirnov, 1982)
and providing the basis for ultrasensitive accelerator mass spectroscopy (AMS)
(Paul, 1993), and secondary negative-ion mass spectroscopy (SIMS) (&¢iater
1991).

The additional electron of a negative ion is bound by short-range potential
rather than by a Coulomb potential. This implies that most negative ions only exist
in one bound electronic configuration as opposed to the infinite number of Rydberg
states present in neutral atoms and positive ions @ted, 1996). They are more
sensitive to correlation effects than the corresponding isoelectronic neutral atoms
or positive ions because for this member of a sequence the core field is weakest
and, therefore, the masking of the interelectronic interaction is reduced (Weiss,
1995; Yamagamet al,, 1994).
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The electron affinity (EA) of an atom A is defined as the difference between
the total energiesH;,; ) of the ground states of A and its negative ion @ndersen
et al, 1999; Hotop and Lineberger, 1985):

EA(A) = Eiot(A) — Eor(A7).

Calculation of excitation energies and electron affinities with suitable accu-
racy, is crucial in predicting new stable ions or excited states and help the exper-
imentalist in narrowing the range to be scanned for a weak or hidden transition
(Olsenet al,, 1994). Since the EA of the atom is much smaller than its ionization
energy, one would expect that the size of the negative ion is much greater than the
size of the atom.

The electron-binding energy of a negative ion can be calculated by a varia-
tional method, in away similar to that used to determine the ionization energy of an
atom (Waghmare, 1996). Reasonable simplifications of the variational technique
can be used to calculate the electron-binding energy of negative ions conferring a
large number of electrons. The reliability of the final result then depends on the
extent to which these simplifications are justified Arias de Saaweidah, 1994;
Bakeret al,, 1990; Weiss, 1995.

Two-electron atomic models involving single-particle orbitals are useful for
exploring the electronic screening and correlation effects. The single-particle or-
bitals could be screened hydrogenic (SH), with a single free parameter, or modified
using two or more parameters (Porras, 1995).

In this paper, Slater-type 2p atomic orbitals with two free screening param-
eters are used to describe the two outermost valence electrons ided, Li—,
and B~. The first parametel;, manifests a constant average electronic screen-
ing of the nuclear charge whilst the second omeprovides spatial correlation
correction through its variable screening effect built in the radial wave function.
The total energy of each anion is calculated using a variational method. A similar
approach was applied to the ground state of helium-like neutral atoms by Porras
(1995). Banyard and Keeble (1994) used configuration-interaction wave functions
to investigate Coulomb correlations in HetZP)-like ions.

2. THEORY

Using atomic units, the Hamiltonian of the two-electron system can be written
as (Lindgren and Morrison, 1986; Weissbluth, 1978)
- 1 z Z 1
H=—-2(V24V) - = - =4 =, 1
2( 1t 2) ri r2+r12 @
whereV? is the Laplacian operatar, andr, are the respective distances between
the electrons and the center of the nucleus,rani$ the distance between the two



A Variational Wave Function for 2p 2-Orbitals in Atomic Negative lons 2055

electrons. The total energy of the system is
E=T+4Vi+ Vi, (2)

where the first termiT, is the total kinetic energy for the two electrons, the second
term, V1, represents the Coulomb interaction between the two electrons and the
nucleus, and the third terrivy», is the electron—electron interaction.

The variational technique is simply based on the calculation of the expectation
value of the energy of the two-electron system assuming a trial wave function with
two independent parametes éndc), and then the minimization of the energy
with respect to both parametef&(/da = 0 anddE /dc = 0). The optimum values
of these parameters are obtained when the least approximate energy of the system
is closest to the real value. Consequently, the energy and the wave function of the
system are determined.

According to the one electron approximation the total wave function of the
system is

W(ry, r2) = () (r2)Yim(O1, 1) Yim (62, ¢2), 3

where the radial part of the single-particle wave functiefn) for a 2p-orbital is
assumed to be modified screened hydrogenic (MSH):

. d-or c _,
@(r)_Brexp{—Z[ 5~ 25 © ]} (4)

wherea andc are free parameters. When= 0 we obtain the radial unscreened
hydrogenic wave function of the 2p state, that is,

Zr

@a(r) = Bor expf -5 . ©)

Whena — oo, we obtain the radial SH wave function of the 2p state, that is,
1-—

®4(r) = Byr exp{—Z[( 2C)r:|}, (6)

whereZc is the screening parameter. The normalization condgam Eq. (4)
can be determined from the normalization condition by introducing the following
coordinate transformation:

X = exp(-ar). (7a)
We obtain the following expression f@:

ad

B?= —
Z(1-¢) '
|(4’ ac’%:)

(7b)
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wherel is defined by the relation

1
I(n, o, B) =/O (—Inx)"x*~1 e dx, (8a)

or
n!

I(n’a’ '3) Z k! (k—l—a)”“ (8b)
The expectation value of the total kinetic energy of the two electrons is
1
T=(¥| - (V1+V2)|lIJ) (9)

From the symmetry of the two electrons, the total kinetic energy of the system is

T= Z/OOOrzcb(r) [—i d (r2 dcp(r)) + l(lzj_zl)@(f)] dr,  (10)

2r2 dr dr

wherel is the orbital angular momentum of the electron. The result of integration
leads to nine energy terms besides the last term, which arises from the centrifugal
barrier, V.

T=Ti+To+T3+Ta+Ts+ Te+ T7+ Tg + To + Tao, (11)
where

Ti=2(1- c)BZ/ r3expZ(1—o)r) exp(%C ear) dr,
0

_z1-9B? (3, Z(la— 0) E) |

at " a (12)

o Z
T, = ZcBZ/ r3expZ(1-oyr) exp(EC e“"") exp(-ar)dr,
0

Zch? Z(1— Z
C4 ' (3, 1-9 +1, —C> ,
a a a

(13)

ZcaP?

o Z
Ty = — 5 / r* exp(-ar) exp(=Z(1—o)r) exp(;C e‘ar) dr,
0

_ ZcaP Z(1—c) Zc
= _ |<4, < +1,—>, (14)

2a° a

Z%(1—c)’*B? [ Z
Ty = —%/ rexpZ(1-oyr) exp(KC e‘ar) dr,
0

_ _22(1— c)2|32I (4, Z(1—c) 5:) ,

1
4a> a ' a (13)
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Z2c(1 - c)B2 [ 7
Ty = _0(72@/ r* exp(-ar) exp(-Z(1— c)r) exp(zcear> .
0
Z%c(1—c)B? Z(1—0) Zc
- - | 4, 1, —, 16
2a5 ( a + a ) ( )
2~2R2 oo
To= 200 / r exp(-2ar) exp(~Z(1 - o)) exp(z—ce‘”) dr,
4 0 a
Z2c¢?B? Z(1—o) Zc
=" "4 2,— ) 17
435 ( a + a > ( )
_ om2 [T2 I Zc
Tr=-28" | r*exp-Z(1-c))exp —e™ ) dr,
0
2 —
-2 (2, 21=0 E) , 18)
a a a
Tg=Z(1- c)Bz/ r3expZ(1-oyr) exp(% e“”) dr,
0
_ o)B2 _
_za 4c)B I(S, Z(1 c), 5:) 19
a a a
To= 2c52/ r® exp(-ar) exp(-Z(1- o) eXp<%C eaf> dr,
0
2 J—
= ZC4B |<3, u-9 Z—C), (20)
a a a
Tio = 232/ rZ2exp(Z(1—or) exp(% e‘ar) dr,
0
2 f—
-5 <2’ 2 E) - (1)
a a a

The second step now is to calculate the expectation value of the Coulomb
electron—nucleus interaction operator:
z Z
Vi=(V]—-———|V¥). (22)
. rz
Assuming that the two electrons are identical, it becomes

Vy = —2Z /Oor|<b(r)|2dr. (23)
0
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Using the same mathematical approach applied to calculate the first term of the
kinetic energy, we will obtain the final result as

—27B? Z(1-c) Zc
vi=ZE (5, 229 Z¢). (24)
a a a
Finally we will calculate the electron—electron interaction:
1
Vi = (V]|— W), (25)
r2

where the detailed calculations of this term are shown in Appendix A.

B /z(1- Z 4 Z(1 - Z
Vip =221 <u —°> | 2537039896 J1<u, —C) . (26)
a a a a a a
where theJ-integrals are defined as follows:

1 1
e, B) = /0 (—In x)3x*~1 e [ / (—In y)*y*-1efy dy} dx, (27a)

and

1 1
(e, B) = /O (—In x)x*~1 e [ / (=In y)Gy“‘leﬂydy} dx. (27b)

These integrals are described in Appendix B.

3. RESULTS

The total energy for the negative ions of hydrogen, helium, lithium, and boron
is computed using a Fortran program, which minimizes the total energy expressed
in Eg. (2) with respect to both parametersandc. The necessary quantities to
calculate the electron affinity for the parent neutral atom of each anion are tab-
ulated in Tables | and II. In Table I, we present the free paramatarsdc, the
total energy of the two-electron system in 2p-state, and the electron affinity (EA).
In our calculations we use atomic units (a.u.) for total energy and eV for the EA,
where 1 a.u= 27.211 3957 eV (Cohen and Taylor, 1987). In Table I, we display
the calculated values of the following quantities for,HHe™, Li—, and B™: the
normalization constanB, the Coulomb interaction between the nucleus and the
two-electron systenV, the interaction potential between the two electrons,
the total kinetic energyl’, and the virial ratio-V/T, whereV = V; + Vio. From
Table I, the virial ratio is satisfied up to 4 decimal digits in all cases and the
corresponding electron affinity in Table | is set very close to the latest available
experimental value. Although we were able to satisfy the varial coefficient up to
15 decimal digits, the corresponding calculated value of the EA in all cases was
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Table I. Calculated Optimum Values of Total Enerdy, and the Corresponding Electron Affinity, EA,
forH™, He™, Li—, and B~

z c a —E (a.u.) EA (eV) [this work] EA (eV) [experimental]
1 0.305226 46 0.22410633 0.15271666 0.754209003 0.754 195 (19)
2 0.15756379 0.14311000 0.90639968 0.077 400350 0.077 516 (6)

3 0.170943 0.4779336  1.842771108 0.618001847 0.618 049 (21)
5 0.131670 0.61272540 5.51792962 0.2790016679 0.279728 (25)

aLykke et al,, 1991.
bKristenseret al, 1997.
CHaeffleret al., 1996.
dScheeet al, 1998.

less closer to the experimental value within 0.3%, whereas the change in optimum
values ofa andc never exceeds 10. The reference energy is chosen to be the
unperturbed 2p level in a single-electron ion and the binding energy of the anion
is assumed equal to the energy required to remove an electron from this orbital
according to Koopmans theorem (Weissbluth, 1978). Recent elaborate numerical
calculations of the EA of hydrogen by Drake and Martin (1998), Bakal.(1990),
and Arias de Saavededal.(1994) yield values with uncertainties of 10eV. The
theoretical result of Xi and Fischer (1996) for helium is 0.077 37 eV, using multi-
configuration H-F (MCHF) orbitals. Recently, Moccia and Spizzo (1990) obtained
a theoretical value of 0.6175 eV for lithium. The recent theoretical values of EA
of boron include 0.279 eV obtained by Eliat al. (1997), using the relativistic
coupled-cluster (RCC) method, and 0.2795 eV obtained by Fisthadr(1995),
using MCHF method.

The behavior of the normalized radial wave function of B presented in
Fig. 1. The solid curve represents the present model using Eq. (4) and the values
of c anda listed in Table I, whereas the corresponding radial SH wave function
of Eq. (6) is represented by the dashed curve. The two curves intersect at a core
radius,r¢, of 1.042 a.u. The peak of the solid curve lies at 0.421 a.u. whereas

Table Il. Calculated Values of the Normalization Constant and the Energy Terms Used to Obtain the
Total Energy of H, He™, Li—, and B™ Listed in Table |

H™ He™ Li— B~
B? 0.004715490384 0.126566742084 2.504175300039 36.437506740115
-Vi 0.390026071936 1.903678 38888 4.070562071828 11.742447021470
\%P3 0.084595498971 0.090968000023 0.385152571525  0.706 8152604548
-V 0.305430572965 1.812710388866 3.685409500303 11.035631761015
T 0.152713910652 0.906310711038 1.842698417568 5.517702141578

VT

2.000018018408

2.000098 163683

2.000006873163

2.0000041 226919
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B —— MSH model .
- - SH model 1

@ (au?)

Radial Distance (a.u.)

Fig. 1. The normalized radial wave function of Bplotted as a function of electronic radial
distance over the range 0-5 a.u., using the present model (solid curve) and the SH model
(dashed curve).

the dashed curve has its peak at 0.461 a.u., which implies that the parameter

a produces an inward shift in the electronic charge density. The properties of all
wave functions are summarized in Table I, wheggs the most probable radial
location of the electron and is the core radius at which the MSH and SH functions
are equal. It shows that the extent of the wave function and the characteristic core
radius decrease with increasing atomic number. The core radius is slightly less
than(r). We found that the MSH electronic charge density falls down to 31% of
its maximum value at = r. for all anions.

To demonstrate the correlation effect of the paramat¢he difference be-
tween the electronic charge densities of the present model and the SH model is
plotted as a function of radial distance, for Bn Fig. 2. It shows that this difference
is positive in the core regiom € r¢) and very close to zero in the outer region.
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Table Ill. Properties of the Modified Screened Hydrogenic (MSH) Wave Functions

Anion r'm re (r) (r? r—h (r=2
H~ 2.2846 6.2124 6.588 839 53.223763 0.195013 0.052 497
He™ 1.0220 2.5650 2.648 852 8.487421 0.475920 0.304713
Li— 0.7101 1.7836 1.865663 4.228 766 0.677904 0.622809
B~ 0.4208 1.0421 1.074 349 1.396515 1.174 245 1.857 377

The dashed curve represents the same property calculated relative to HF wave
functions of 2p orbital used in the calculation of Ramsbottom and Bell (1995),
where the difference is almost three times its value compared with the SH case.
The core radius relative to HF function is 1.5180 and 1.0352 a.u. relative to SH

2.5 T T T T T T | T T T1 | T T T 1 I T T T
i Ap = pMSH _ SH |
L . 4
R N — Ap = pM H pHF |
15 s
s | :
L]
= L 4
2 K i
g ) A T T T I Y I N B A
0 1 2 3 4 5

Radial Distance (a.u.)

Fig. 2. The difference in electronic charge densityp, between the present model and the
SH [HF] model, represented by solid [dashed] curve, as a function of radial distance over the
range 0-5 a.u.
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function. The reason for that is the lack of proper correlation among electrons of
opposite spin in the Hartree—Fock method (Weissbluth, 1978).

Table | shows that the boron anion has the smattesilue but the largest
a-value, which implies that electron correlations play a dominant role in boron
anion, which is the most weakly bound stable ion among the lightest elements.
The lightest anion, H, has ac-value, which is double each other value reflecting
the strong screening effect of the core 1s-electron.

4. CONCLUSION

In this work, the ground state of a negative ion is treated as a two-electron
system in the 2pconfiguration. Each electron is described by a MSH wave func-
tion that involves two free adjustable parameters. The binding energy of the extra
electron in each atomic anion is calculated using a variational technique which
leads to a set of input parametessandc) for optimizing the total energy of the
anion keeping//T = —2.0000 in all cases. Although the HF method will always
give the most accurate value for the energy, the accuracy of an approximate wave
functionis not entirely determined by the accuracy of the corresponding variational
energy.

The optimum radial wave function allows an inward shift for the electronic
charge density, increasing its value in the core region 6.21 a.u. for H and
r < 1.04 a.u. for B') and lowering it in the outer regiom & 6.21 a.u. for H
andr > 1.04 a.u. for B). The screening effect is thus improved by introducing
the second screening parameteln other words, the electron correlation is taken
into account through the variable screening effect of the pararaster

The size of the anion is determined by the expectation value of the electronic
radial distance(r), which is larger than the size of the parent neutral atom. We
found that the optimum wave functions deduced from the MSH model lead to
values of(r) that are almost inversely proportional to the atomic humBehut
(r~1y values are directly proportional @.

APPENDIX A: THE INTERACTION TERM

The general definition of the interaction term is
1
Vi = (V|—|¥), (A1)
r12
whereV is the two-electron wave function defined as

W(ry, rz, 01, 02, 91, 92) = P(r1)Yim(01, 91) P(r2)Yimy (02, ¢2), (A.2)
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Now we will rewrite Eq. (A.1) in the integral form as

1 _ _
V12=/\D*(r1,r2,91, 92,§01,¢2)r—‘y(r1,f2,911 02, 1, 2)dridra.  (A.3)
12

Write 1/r, in terms of the Legendre polynomial as follows:

rt & 4n
r_12 = Z (T pL (Coswiz) = Z I‘Lil Z T YLM(91, ?1)Yim(02, ¢2).
=0 =o'

(A.4)

The integral in Eg. (A.3) vanishes unless the triangle conditions are satisfied
(=m +m+ M =0 andl’ +1 4+ L is an even integer) (Weissbluth, 1978) with
L=0,2;m =m=0, for the cas¢’ =1 = 1.

For the casé. = 0, the angular part in Eq. (A.3) equals unity and the radial
part is

0 ry 00 1
(Vi2)—o = / [/ <I>2(r2)r drz —i-/ dA(ro)rs— drz}cbz(rl)rl2 dry.
r1=0 LJr,=0 ry r2

(A.5)

The second term in Eq. (A.5) is equivalent to

00 00 1 00 ra
/ [ / ®2(r )2 dr2:|<l>2(r1)r12dr1 _ f [ / <I>2(r1)r12dr1}d>2(r2)r2dr2,
ri=0 LJr; ra r,.=0LJo

(A.6)
then
(V12)L=0=/0 drir;® (rl)f drar3d2(ry)
—|—/0 dr2r2c1>2(r2)/0 dry r2®%(ry). (A.7)
The final result is
(Vi2)Leo = 2 /O oorc1>2(|r)o|r /0 r s?®2(s) ds (A.8)
The interaction term for the case= 2 is
(V2)L=2 = —\/_/ dry rf®?(ry)
[/ dr2r2d>2(r2) / dr2r2d>2(r2) ] (A.9)
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This integral is equivalent to

16 o0 n r2
(Ve = 5oV [ drarfel() [ | drzrzz‘bz(rz)r—zg} . (AL
0 0 1
Then, the interaction term becomes
o0 r
Vi, = Zf r d2(r) dr/ s2d2(s) ds
0 0

+ ;—g@ /0 " dr %CDZ(r) [ /O ds §‘d>2(s)} . (A.11)

APPENDIX B: CALCULATION OF J INTEGRAL

The usual definition of the integrdl is
1 1
J(o, B) = / (—In x)®x*~1 exp(Bx) dxf (—In y)*y*! exp@y) dy. (B.1)
0 X
The integration ory is written as follows:
1
| iyt ewey ay
X
X 1
- /O (—In )y exp@y) dy-+ /0 (—In y)* exp(y)y"~* dy,
where the last term is defined by integtal
1
[y eyt dy=14.a ). (8.2)
and the first term is written as

X _ 4 a—1 _ d_4 ) —s—1 :|
/O (—In y)* exp By)y dy—[ = /0 pEyy ey . B

Expressing the exponential as a power series, the integral becomes

Xk-Hx—S

lgk d* * a+k—s—1 _ ﬂk d*
ZF [Q/O Y dyils:O_kX_(:)ﬁ @(k"i_a_S)s:O, (814)

k=0
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whens = 0, then this equation becomes

ﬂk d4 XkJruth
2 @<—k+a_s>szo

xke(—In x)*  xkte(—In x)3 xkte(—In x)?
k 2 3
_ ﬁ_k (k+a) K+ ) (k+a) 5)
k=0 k! +24Xk+a(_ In X) xKt+e
(k+a)* (k+a)®
Substituting Eg. (B.5) into Eqg. (B.1), we obtain
J(, B) =13, a, B)I (4, , B)
(7, 2 + K, B)+ ——1(6, 2 + K, B)
4 12 a+k
- ;k!(cx+k) Ttk O AT s
(B.6)

The J;-integral can be done in the same mathematical manipulation, the final
result is

‘Jl(a! :8) =1 (1! o, :B)I (6! «, :3)

_I(7,2a+k,ﬁ)+a—j_kl(6,2a+k,ﬂ) ]
30 120
lgk +m|(5,2&+k,ﬂ)+m
_ggk!(a—l—k) x 1 (4,20 +k, B)+ 7(057_2’_0@4
X |(3,2a+k,/3)+(a+k)5|(2,2a+k,ﬂ)
720
i +mxl(l,2a+k,,8) |

(B.7)
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